EFFECT OF La³⁺ ON CALCIUM BINDING TO ERYTHROCYTE CYTOSKELETON

G. M. Kravtsov and Yu. V. Postnov

UDC 616.155.1-008.924.1-02-092.9-07

KEY WORDS: La³⁺; calcium; erythrocytes.

Under the influence of lanthanum (La^{3+}) on human erythrocytes an increase in the free calcium concentration (Ca_{in}^{2+}) in the cytosol is observed [7, 8]. It is considered that this effect of La^{3+} is due to inhibition of Ca-ATPase activity and to an increase in the passive membrane permeability for Ca^{2+} [6, 8]. Changes in Ca^{2+} metabolism induced by lanthanum affect the shape of the erythrocytes [8], which can be attributed to changes in the cytoskeleton following binding with Ca^{2+} [3], However, the problem whether an increase in Ca_{in}^{2+} in the erythrocytes leads to more intensive binding of Ca^{2+} with the cytoskeleton has not been investigated.

The aim of this investigation was to study binding of Ca²⁺ with the cytoskeleton of erythrocytes when the native cells are exposed to the action of LaCl₃.

EXPERIMENTAL METHOD

Erythrocytes from the subclavian artery of rats or a human vein, washed to remove plasma and blood cells were preincubated for 30 min at 37°C (50% hematocrit) in medium of the following composition (mM): NaCl 130, KCl 3, MgCl₂ 1, CaCl₂ 1, glucose 5, bovine serum albumin (fraction 5) 0.1%, HEPES-Tris 20, pH 7.4 (medium A). After preincubation the samples were centrifuged at 1500g for 5 min, the supernatant was discarded, and the residue was distributed in volumes of 100 μ l among tubes containing 100 μ l of medium A + 45 CaCl₂, 20 μ Ci/ml, or with 100 μ l of medium A + 14 C-glucose, 30 μ Ci/ml, and incubated for the time required by the experimental conditions. The erythrocytes were then washed 5 times (with centrifugation) in 10 volumes of cold water (0-2°C), containing (in mM): NaCl 150, HEPES-Tris 10, pH 7.4. After washing, the erythrocytes were disintegrated by the addition of 10 volumes of medium containing (in mM): KCl 100, NaCl 10, Triton X-100 2%, HEPES-Tris 20, pH 7.4 (25°C) (medium B). The lysed erythrocytes were applied to GF/C filters (Whatman, England), which were washed with medium B 4 times (3 ml each time). The filters were placed in 5 ml of Bray's solution and their radioactivity measured on Delta 300 counter (USA).

EXPERIMENTAL RESULTS

Different compounds increasing the Ca_{in}^{2+} concentration in the erythrocytes, namely ionophores (A-23187 and ionomycin), orthovanadate, and detergents, in particular, a low concentration of saponin (0.04%), virtually do not bind Ca^{2+} with the cytoskeleton (Table 1). If LaCl₃, which also induces an increase in Ca_{in}^{2+} due to inhibition of Ca-ATPase [6, 8], was added to the erythrocyte suspension, binding of Ca^{2+} with the cytoskeletal fraction was observed in both human and rat cells. The value of $K_{1/2}$ for binding of Ca^{2+} was within the region of $3 \cdot 10^{-4}$ M LaCl₃ (Fig. 1a). It must be pointed out, however, that even low concentrations of La^{3+} (10^{-7} M) give rise to quite distinct binding of the cation with the cytoskeleton. The process of Ca^{2+} binding develops with time to reach a maximum by the 180th minute (Fig. 1b). This process also depends on the La^{3+} concentration: the higher the concentration the faster equilibrium in Ca^{2+} binding is reached (data

All-Union Cardiologic Scientific Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 113, No. 2, pp. 141-142, February, 1992. Original article submitted May 8, 1991.

TABLE 1. Binding of Ca²⁺ by Cytoskeleton of Human and Rat Erythrocytes Treated with Various Compounds

Substance added	Number of ob- serva- tions	Rate of binding of Ca ²⁺ , nmoles/liter cells/h	
		human	rat
A-23187(5·10 ⁻⁶ M)	12 4	NR [*] 65±13	NR [*] 49±16
Ionomycin (10 ⁻⁶ M)	4	87±14	76±19
(10 ⁻⁸ M) Na ₃ VO ₄ (0,5 mM)	3	3.7 ± 0.8 4.2 ± 0.6 2.8 ± 0.4	$3,3\pm0,6$ $3,8\pm0,4$ $3,2\pm0,7$
Saponin (0.04%) LaCl ₃ $(100 \mu M)$ LaCl ₃ $(100 \mu M) + inosine$	4 48	2,0±0,4 2490±51	2190±124
(10 mM) + iodoacetamide (5 mM)	6	730±36	620 ± 24

Legend. NR) Not recorded.

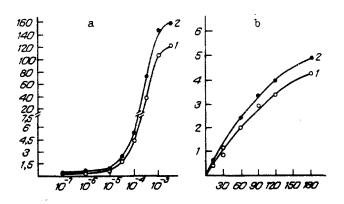


Fig. 1. Binding of $^{45}\text{Ca}^{2+}$ by cytoskeleton of human (1) and rat (2) erythrocytes, treated with La^{3+} . a) Dependence of binding on La^{3+} concentration. Abscissa, La^{3+} concentration (in μ M); ordinate, rate of binding of Ca^{2+} (in μ moles/liter cells/min); b) dependence of binding on duration of incubation with La^{3+} . Abscissa, time (in min); ordinate, binding of Ca^{2+} (in μ moles/liter cells).

not given). Exhaustion of the erythrocytes relative to their nucleotide content (ATP, for example) with 5 mM iodoace-tamide (incubation for 3 h at 37°C) [7, 8] leads to reduction of Ca²⁺ binding by two-thirds (Table 1).

Besides binding of Ca²⁺, under the influence of La³⁺ on intact rat and human erythrocytes an increase in the rate of incorporation of ¹⁴C-glucose into the cytoskeleton was observed (Fig. 2).

La³⁺ is known to increase the uptake of Ca²⁺ not only into erythrocytes, but also into several other cells [4, 5]. There is no information in the literature on binding of Ca²⁺ with the cytoskeleton of cells of any kind. It can be postulated that it is the increase in Ca_{in}²⁺ concentration caused by La³⁺ that is responsible for the appearance of binding of Ca²⁺ on the cytoskeleton. However, experiments with calcium ionophores and other compounds increasing the Ca_{in}²⁺ concentration demonstrate that this condition is necessary but not sufficient for the binding powers of the erythrocyte cytoskeleton to be manifested. Besides an increase in the intracellular calcium concentration, La³⁺ also evidently modifies the elements of the cytoskeleton so that they become sensitive to Ca²⁺. Moreover, modification of the cytoskeleton by La³⁺ takes place from the outer side of the erythrocyte, since La³⁺ does not penetrate inside intact erythrocytes [8]. Changes in the cytoskeleton under the influence of La³⁺ on erythrocytes can be due to two causes: direct interaction of the cation with the external elements of the cytoskeleton (for example, with band 3), or indirectly through the induction of internal processes. La³⁺ has

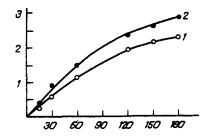


Fig. 2. Incorporation of 14 C-glucose into cytoskeleton of human (1) and rat (2) erythrocytes, treated with La³⁺. Abscissa, time (in min); ordinate, incorporation of label into cytoskeleton (in μ moles/liter cells).

an equal ionic radius with Ca²⁺, and for that reason it can displace Ca²⁺ from binding sites on proteins and lipids [1, 2] and can thus modify their structure. Additional experiments with treatment of the cytoskeleton with chloroform and methanol (1:2), after which it was sedimented on filters by Triton X-100, have shown that this operation does not affect Ca²⁺ binding. Our results in this direction are evidence that the principal Ca-binding elements of the cytoskeleton are probably proteins. The results of experiments with iodoacetamide and ¹⁴C-glucose show convincingly that binding of Ca²⁺ is triggered by La through activation of ATP-dependent intraerythrocytic reactions. The possibility likewise cannot be ruled out that the effect of La³⁺ is due to a combined process of direct and indirect action of the cation. Further investigation of this problem will necessitate experiments to study binding of Ca²⁺ on the isolated cytoskeleton of erythrocytes.

Thus a new type of binding of Ca²⁺ with the cytoskeletal fraction of human and rat erythrocytes was discovered during this research. The Ca-binding property of the cytoskeleton increases sharply in response to the action of lanthanum on the erythrocyte surface.

LITERATURE CITED

- 1. H. G. Brittain, F. S. Richardson, and R. B. Martin, J. Am. Chem. Soc., 98, 8255 (1976).
- 2. C. H. Evans, Trends. Biochem. Sci., 8, 445 (1983).
- 3. S. R. Goodman and K. Shiffer, Am. J. Physiol., 244, C121 (1983).
- M. Korc and M. H. Schöni, Proc. Nat. Acad. Sci. USA, 84, 1282 (1987).
- 5. J. C. Parker and G. J. Barritt, Biochem. J., 200, 109 (1981).
- 6. E. E. Quist and B. D. Roufogalis, FEBS Lett., 50, 135 (1975).
- 7. B. Sarkadi, I. Szasz, A. Gerloczy, et al., Biochim. Biophys. Acta, 464, 93 (1977).
- 8. I. Szasz, B. Sarkadi, A. Schubert, et al., Biochim. Biophys, Acta, 512, 331 (1978).